76 research outputs found

    Qubits from extra dimensions

    Full text link
    We link the recently discovered black hole-qubit correspondence to the structure of extra dimensions. In particular we show that for toroidal compactifications of type IIB string theory simple qubit systems arise naturally from the geometrical data of the tori parametrized by the moduli. We also generalize the recently suggested idea of the attractor mechanism as a distillation procedure of GHZ-like entangled states on the event horizon, to moduli stabilization for flux attractors in F-theory compactifications on elliptically fibered Calabi-Yau four-folds. Finally using a simple example we show that the natural arena for qubits to show up is an embedded one within the realm of fermionic entanglement of quantum systems with indistinguishable constituents.Comment: 32 pages Late

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    On the geometry of a class of N-qubit entanglement monotones

    Full text link
    A family of N-qubit entanglement monotones invariant under stochastic local operations and classical communication (SLOCC) is defined. This class of entanglement monotones includes the well-known examples of the concurrence, the three-tangle, and some of the four, five and N-qubit SLOCC invariants introduced recently. The construction of these invariants is based on bipartite partitions of the Hilbert space in the form C2NCLCl{\bf C}^{2^N}\simeq{\bf C}^L\otimes{\bf C}^l with L=2Nnl=2nL=2^{N-n}\geq l=2^n. Such partitions can be given a nice geometrical interpretation in terms of Grassmannians Gr(L,l) of l-planes in CL{\bf C}^L that can be realized as the zero locus of quadratic polinomials in the complex projective space of suitable dimension via the Plucker embedding. The invariants are neatly expressed in terms of the Plucker coordinates of the Grassmannian.Comment: 7 pages RevTex, Submitted to Physical Review

    Mermin's Pentagram as an Ovoid of PG(3,2)

    Full text link
    Mermin's pentagram, a specific set of ten three-qubit observables arranged in quadruples of pairwise commuting ones into five edges of a pentagram and used to provide a very simple proof of the Kochen-Specker theorem, is shown to be isomorphic to an ovoid (elliptic quadric) of the three-dimensional projective space of order two, PG(3,2). This demonstration employs properties of the real three-qubit Pauli group embodied in the geometry of the symplectic polar space W(5,2) and rests on the facts that: 1) the four observables/operators on any of the five edges of the pentagram can be viewed as points of an affine plane of order two, 2) all the ten observables lie on a hyperbolic quadric of the five-dimensional projective space of order two, PG(5,2), and 3) that the points of this quadric are in a well-known bijective correspondence with the lines of PG(3,2).Comment: 5 pages, 4 figure

    A study of two-qubit density matrices with fermionic purifications

    Full text link
    We study 12 parameter families of two qubit density matrices, arising from a special class of two-fermion systems with four single particle states or alternatively from a four-qubit state with amplitudes arranged in an antisymmetric matrix. We calculate the Wooters concurrences and the negativities in a closed form and study their behavior. We use these results to show that the relevant entanglement measures satisfy the generalized Coffman-Kundu-Wootters formula of distributed entanglement. An explicit formula for the residual tangle is also given. The geometry of such density matrices is elaborated in some detail. In particular an explicit form for the Bures metric is given.Comment: 21 pages, 1 figur

    The geometry of entanglement: metrics, connections and the geometric phase

    Full text link
    Using the natural connection equivalent to the SU(2) Yang-Mills instanton on the quaternionic Hopf fibration of S7S^7 over the quaternionic projective space HP1S4{\bf HP}^1\simeq S^4 with an SU(2)S3SU(2)\simeq S^3 fiber the geometry of entanglement for two qubits is investigated. The relationship between base and fiber i.e. the twisting of the bundle corresponds to the entanglement of the qubits. The measure of entanglement can be related to the length of the shortest geodesic with respect to the Mannoury-Fubini-Study metric on HP1{\bf HP}^1 between an arbitrary entangled state, and the separable state nearest to it. Using this result an interpretation of the standard Schmidt decomposition in geometric terms is given. Schmidt states are the nearest and furthest separable ones lying on, or the ones obtained by parallel transport along the geodesic passing through the entangled state. Some examples showing the correspondence between the anolonomy of the connection and entanglement via the geometric phase is shown. Connections with important notions like the Bures-metric, Uhlmann's connection, the hyperbolic structure for density matrices and anholonomic quantum computation are also pointed out.Comment: 42 page

    Exact solutions for semirelativistic problems with non-local potentials

    Full text link
    It is shown that exact solutions may be found for the energy eigenvalue problem generated by the class of semirelativistic Hamiltonians of the form H = sqrt{m^2+p^2} + hat{V}, where hat{V} is a non-local potential with a separable kernel of the form V(r,r') = - sum_{i=1}^n v_i f_i(r)g_i(r'). Explicit examples in one and three dimensions are discussed, including the Yamaguchi and Gauss potentials. The results are used to obtain lower bounds for the energy of the corresponding N-boson problem, with upper bounds provided by the use of a Gaussian trial function.Comment: 13 pages, 3 figure

    Correlation induced non-Abelian quantum holonomies

    Full text link
    In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the L\'{e}vay geometric phase [2004 {\it J. Phys. A: Math. Gen.} {\bf 37} 1821] in the case of two-qubit systems undergoing local SU(2) evolutions.Comment: Minor corrections; journal reference adde

    A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)

    No full text
    Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups
    corecore